Markovian contact processes

Author:

Mollison Denis

Abstract

Markovian contact processes (mcp's) include some of the commoner models for the spatial spread of population processes, such as the ‘simple’ and ‘general’ epidemics, percolation processes, and birth, death and migration processes. They are here set in a framework which relates them to each other, and to a particular basic model, the contact birth process (cbp); indeed they are defined as modifications of the cbp. The immediate advantage of this is that bounds for the velocity of the cbp, which can be obtained from the linear equation describing its expected numbers (provided the contact distribution has exponentially bounded tail) apply also to general mcp's. Existence of moments (and for some processes their time-derivatives) of St(θ), the distance to the furthest individual in an arbitrary direction θ, can also be deduced whenever the corresponding moment of the contact distribution exists.An important subclass consists of population-monotone mcp's, for which the distributions of St can be shown to be subconvolutive, so that the work of Hammersley (1974) can be applied to obtain convergence theorems for St/t; and these can be extended to convergence of the convex hull of the set of inhabited points. These results are particularly valuable because they apply to some non-linear processes, e.g. the simple epidemic. Some special results on the cbp (Section 6) emphasize the differences between linear and non-linear spatial stochastic processes.Although the paper is written throughout in terms of continuous-time processes, the results on subconvolutive distributions are actually more easily applied in the discrete-time case. (Conversely, the approach used in the accompanying paper by Biggins (pp. 62–84), which is written in terms of discrete-time processes, can be extended to deal also with continuous-time processes.)

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference36 articles.

1. First-passage percolation;Hammersley;J. R. Statist. Soc. B,1966

2. The advancing wave in a spatial birth process

3. A two-dimensional Poisson growth process;Morgan;J. R. Statist. Soc. B,1965

4. Biggins J. D. (1976) Asymptotic Properties of the Branching Random Walk. Oxford University D.Phil. Thesis.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quickest Inference of Susceptible-Infected Cascades in Sparse Networks;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

2. Describing, Modelling and Forecasting the Spatial and Temporal Spread of COVID-19: A Short Review;Mathematics of Public Health;2021-09-07

3. Asymptotic of the Critical Value of the Large-Dimensional SIR Epidemic on Clusters;Journal of Theoretical Probability;2017-08-03

4. Achieving nonzero information velocity in wireless networks;The Annals of Applied Probability;2017-02-01

5. Dynamic connectivity and path formation time in Poisson networks;Wireless Networks;2013-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3