Embedding lattices into the wtt-degrees below 0′

Author:

Downey Rod,Haught Christine

Abstract

A reducibility ≤p is a procedure whereby a set A can be computed from a set B. The most general and most extensively studied reducibility is Turing reducibility (≤T). However, when one analyzes effectiveness considerations in classical mathematics, one often discovers that the relevant reducibilities are stronger (i.e., more restrictive) than ≤T. To illustrate, in combinatorial group theory we find that the word problem is many-one reducible to the conjugacy problem, and that word problems occur in each r.e. truth table (tt-) degree (see, for example, Miller [17]).In the present paper we are concerned with another strong reducibility: weak truth table (wtt-) reducibility. Here the reader should recall that Awtt, β means that there is a procedure Φ and a recursive function φ such that Φ(β) = A and for all x, the u(Φ(β; X)) < φ (x). That is, the amount of information used in the computation is bounded by φ. The critical difference between truth table and weak truth table reducibilities is that for tt we will at once be “given the whole table.” Thus if Δ is a tt-procedure and δ is its use, then for all x and all strings σ of length δ(x) we can figure out Δ(σ; x). On the other hand if Δ is merely a wtt-procedure it may be that for some string σ, Δ(σ; x)↓, whilst for another string μ of the same length it may be that Δ{μ; x) ↑. We remark that wtt-reducibility arises very naturally both in effective algebra and in the structure of the r.e. T-degrees R. The reader should see, for instance, Downey and Remmel [3], where it is shown that the complexity of r.e. bases of an r.e. vector space V is characterised precisely by the wtt-degrees below V, and also Ladner and Sasso [14] or Downey [1], where the wtt-degrees are used to investigate cupping and capping in R.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference21 articles.

1. Strong reducibilities

2. Degrees of Unsolvability

3. On tt-degrees of recursively enumerable Turing degrees;Kobzev;Matematischeskiĭ Sbornik (Novaya Seriya),1978

4. Embedding the diamond lattice in the recursively enumerable truth-table degrees

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3