Author:
Chao Chern-Ching,Slivka John
Abstract
For each positive integer n, let Sn be the nth partial sum of a sequence of i.i.d. random variables which assume the values +1 and −1 with respective probabilities p and 1 – p, having mean μ= 2p − 1. The exact distribution of the random variable , where sup Ø= 0, is given for the case that λ > 0 and μ+ λ= k/(k + 2) for any non-negative integer k. Tables to the 99.99 percentile of some of these distributions, as well as a limiting distribution, are given for the special case of a symmetric simple random walk (p = 1/2).
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献