Author:
Cholak Peter A.,Jockusch Carl G.,Slaman Theodore A.
Abstract
AbstractWe study the proof–theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RTkn denote Ramsey's theorem for k–colorings of n–element sets, and let RT<∞n denote (∀k)RTkn. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X″ ≤T 0(n). Let IΣn and BΣn denote the Σn induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models of arithmetic enables us to show that RCA0 + IΣ2 + RT22 is conservative over RCA0 + IΣ2 for Π11 statements and that RCA0 + IΣ3 + RT<∞2 is Π11-conservative over RCA0 + IΣ3. It follows that RCA0 + RT22 does not imply BΣ3. In contrast, J. Hirst showed that RCA0 + RT<∞2 does imply BΣ3, and we include a proof of a slightly strengthened version of this result. It follows that RT<∞2 is strictly stronger than RT22 over RCA0.
Publisher
Cambridge University Press (CUP)
Cited by
135 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献