Abstract
Let {Zn} be a supercritical Galton–Watson process in varying environments, and W be the limit of the non-negative martingale {Zn/EZn}. Under a condition which ensures that W is not identically equal to zero we give an upper bound on the possible rates of growth of the process on the set {W = 0}, and find a sufficient condition for the process to have only one rate of growth. We also give an example of a process whose offspring distributions have bounded pth moments, for some p > 1, and which has an infinite number of rates of growth.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献