The use of Kripke's schema as a reduction principle

Author:

van Dalen D.

Abstract

The comprehension principle of second order arithmetic asserts the existence of certain species (sets) corresponding to properties of natural numbers. In the intuitionistic theory of sequences of natural numbers there is an analoguous principle, implicit in Brouwer's writing and explicitly stated by Kripke, which asserts the existence of certain sequences corresponding to statements. The justification of this principle, Kripke's Schema, makes use of the concept of the so-called creative subject. For more information the reader is referred to Troelstra [5].Kripke's Schema readsThere is a weaker versionThe idea to reduce species to sequences via Kripke's schema occurred several years ago (cf. [2, p. 128], [5, p. 104]). In [1] the reduction technique was applied in the construction of a model for HAS.On second thought, however, I realized that there is a straightforward, simpler way to exploit Kripke's schema, avoiding models altogether. The idea to present this material separately was forced on the author by C. Smorynski.Consider a second order arithmetic with both species and sequence variables. By KS we have(for convenience we restrict ourselves in KS to 0-1-sequences). An application of AC-NF givesOf course ξ is not uniquely determined. This is the key to the reduction of full second order arithmetic, or HAS, to a theory of sequences.We now introduce a translation τ to eliminate species variables. It is no restriction to suppose that the formulae contain only the sequence variables ξ1, ξ3, ξ5, …Note that by virtue of the definition of τ the axiom of extensionality is automatically verified after translation. The translation τ eliminates the species variables and leaves formulae without species variables invariant.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference5 articles.

1. A model for HAS. A topological interpretation of the theory of species of natural numbers

2. Formal systems for some branches of intuitionistic analysis

3. A topological interpretation of second order intuitionistic arithmetic;Moschovakis;Compositio Mathematica,1973

4. Principles of Intuitionism

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free choice sequences: A temporal interpretation compatible with acceptance of classical mathematics;Indagationes Mathematicae;2019-05

2. Bar Induction is Compatible with Constructive Type Theory;Journal of the ACM;2019-04-26

3. The Creating Subject, the Brouwer–Kripke Schema, and infinite proofs;Indagationes Mathematicae;2018-12

4. The Genesis of Mathematical Objects, Following Weyl and Brouwer;Causality, Meaningful Complexity and Embodied Cognition;2009-12-22

5. Intuitionistic Logic;Handbook of Philosophical Logic;2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3