Closure and Quine's *101

Author:

Fitch Frederic B.

Abstract

The purpose of this paper is to suggest two alternatives to Quine's definition of closure. These new definitions have two advantages over Quine's definition, and they probably are the simplest definitions having both advantages. The two advantages are:(1). Principle *101 becomes superfluous and may be dropped from Quine's set of principles for quantification. (In the case of my second definition, however, the dropping of *101 must be balanced by a slight change in *104.)(2). Closure is made independent of the alphabetical order of variables.The second of these advantages turns on the fact that the “alphabetical order” possessed by variables in virtue of their respective positions in the alphabet (or arbitrarily assigned to them) is a mere convention and not of genuine logical significance. It seems therefore desirable to consider some alternatives to Quine's definition of closure, since according to his definition the closure of a given formula will be one statement or another, depending upon whether or not one letter of the alphabet is alphabetically prior to a certain other letter. It is interesting that the removal of this minor artificiality also enables us to dispense with *101.According to Quine, the closure of a formula containing n free variables is obtained by prefixing to it in alphabetical order the n universal quantifiers formed from these variables by enclosing each in a pair of parentheses. (If n = 0 the formula is its own closure and is a “statement” rather than a “matrix.”) Thus the statement ‘(x)(y)(z)(xϵyyϵz)’ would be the closure of ‘xϵyyϵz’, but ‘(z)(x)(y)(xϵyyϵz)’ would not be its closure. Now there is no reason why ‘(z)(x)(y)(xϵyyϵz)’ or (y)(z)(x)(xϵyyϵz) and so on, could not just as well be regarded as “the” closure of ‘(xϵyyϵz’ as ‘(x)(y)(z)(xϵyyϵz)’. I therefore propose to allow to each formula not merely one closure, but as many closures as can be obtained by permuting in various ways the n prefixed universal quantifiers. In this way alphabetical order becomes irrelevant and no preference is given to one order of prefixed quantifiers in contrast to other orders which seem equally good. This constitutes my first redefinition of closure.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference2 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simplified formalization of predicate logic with identity;Archiv für Mathematische Logik und Grundlagenforschung;1964-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3