Abstract
This paper is concerned with a bivariate Markov process {Xt, Nt; t ≧ 0} with a special structure. The process Xt may either increase linearly or have jump (downward) discontinuities. The process Xt takes values in [0,∞) and Nt takes a finite number of values. With these and additional assumptions, we show that the steady state joint probability distribution of {Xt, Nt; t ≧ 0} has a matrix-exponential form. A rate matrix T (which is crucial in determining the joint distribution) is the solution of a non-linear matrix integral equation. The work in this paper is a continuous analog of matrix-geometric methods, which have gained widespread use of late. Using this theory, we present a new and considerably simplified characterization of the waiting time and queue length distributions in a GI/PH/1 queue. Finally, we show that the Markov process can be used to study an inventory system subject to seasonal fluctuations in supply and demand.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference20 articles.
1. Ramaswami V. (1985) Non-linear matrix equations in applied probability: Solution techniques and open problems. SIAM Rev.
2. Stationary distributions of the negative exponential type for the infinite dam;Gani;J. R. Statist. Soc.,1957
3. Markov Chain Models — Rarity and Exponentiality
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献