Abstract
It is shown how Markov chain theory can be exploited to study non-linear time series, the emphasis being on the classification into stationary and non-stationary models. A generalized h-step version of the Tweedie (1975), (1976) criteria is formulated, and applications are given to a number of non-linear models. New results are obtained, and known results are shown to emerge as special cases in both the scalar and vector case. A connection to stability theory is briefly discussed, and it is indicated how the Markov property can be utilized for estimation purposes.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献