Splittings and the finite model property

Author:

Kracht Marcus

Abstract

AbstractAn old conjecture of modal logics states that every splitting of the major systems K4, S4, G and Grz has the finite model property. In this paper we will prove that all iterated splittings of G have fmp, whereas in the other cases we will give explicit counterexamples. We also introduce a proof technique which will give a positive answer for large classes of splitting frames. The proof works by establishing a rather strong property of these splitting frames namely that they preserve the finite model property in the following sense. Whenever an extension Λ has fmp so does the splitting Λ/f of Λ by f. Although we will also see that this method has its limitations because there are frames lacking this property, it has several desirable side effects. For example, properties such as compactness, decidability and others can be shown to be preserved in a similar way and effective bounds for the size of models can be given. Moreover, all methods and proofs are constructive.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference18 articles.

1. Der Verband der normalen verzweigten Modallogiken

2. Constructing a sequence of strongly independent intuitionistic propositional calculi;Yankov;Doklady Akademii Nauk SSSR,1968

3. Equational bases and nonmodular lattice varieties

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intermediate Logics in the Setting of Team Semantics;Outstanding Contributions to Logic;2024

2. Characteristic Formulas Over Intermediate Logics;Larisa Maksimova on Implication, Interpolation, and Definability;2018

3. CANONICAL FORMULAS FOR wK4;The Review of Symbolic Logic;2012-09-19

4. Frame Based Formulas for Intermediate Logics;Studia Logica;2008-10-24

5. A Splitting Logic in NExt(KTB);Studia Logica;2007-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3