Abstract
A target is assumed to choose its starting position in a search at an unknown position in a finite search space. No prior probability distribution for the target's initial location is assumed. During the search the target is assumed to move from position to position in the search space according to a Markov process. A search is defined to be the observation of a sequence of random variables. Representations for the minimax estimator for target location at any stage of the search, the least favorable prior distribution for the target, and the value of the estimation game are presented. An example is computed in which Bayes estimators are compared with minimax estimators for target location.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SEARCH GAMES: LITERATURE AND SURVEY;Journal of the Operations Research Society of Japan;2016
2. Search Theory;Wiley StatsRef: Statistics Reference Online;2014-11-17
3. Search Theory;Encyclopedia of Statistical Sciences;2006-08-15
4. A survey of the search theory literature;Naval Research Logistics;1991-08
5. A search game with one object and two searchers;Journal of Applied Probability;1986-09