Ordinal numbers and the Hilbert basis theorem

Author:

Simpson Stephen G.

Abstract

In [5] and [21] we studied countable algebra in the context of “reverse mathematics”. We considered set existence axioms formulated in the language of second order arithmetic. We showed that many well-known theorems about countable fields, countable rings, countable abelian groups, etc. are equivalent to the respective set existence axioms which are needed to prove them.One classical algebraic theorem which we did not consider in [5] and [21] is the Hilbert basis theorem. Let K be a field. For any natural number m, let K[x1,…,xm] be the ring of polynomials over K in m commuting indeterminates x1,…,xm. The Hilbert basis theorem asserts that for all K and m, every ideal in the ring K[x1,…,xm] is finitely generated. This theorem is of fundamental importance for invariant theory and for algebraic geometry. There is also a generalization, the Robson basis theorem [11], which makes a similar but more restrictive assertion about the ring Kx1,…,xm〉 of polynomials over K in mnoncommuting indeterminates.In this paper we study a certain formal version of the Hilbert basis theorem within the language of second order arithmetic. Our main result is that, for any or all countable fields K, our version of the Hilbert basis theorem is equivalent to the assertion that the ordinal number ωω is well ordered. (The equivalence is provable in the weak base theory RCA0.) Thus the ordinal number ωω is a measure of the “intrinsic logical strength” of the Hilbert basis theorem. Such a measure is of interest in reference to the historic controversy surrounding the Hilbert basis theorem's apparent lack of constructive or computational content.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Well Partial Orders;Outstanding Contributions to Logic;2024

2. On the Existence of Infinite Monomial Division Chains with Finitely Many Indeterminates;Lecture Notes in Computer Science;2024

3. Normal functions and maximal order types;Journal of Logic and Computation;2023-02-16

4. Minimal bad sequences are necessary for a uniform Kruskal theorem;Advances in Mathematics;2022-05

5. A MATHEMATICAL COMMITMENT WITHOUT COMPUTATIONAL STRENGTH;The Review of Symbolic Logic;2021-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3