Silhouettes of invisible black holes

Author:

Dokuchaev V I,Nazarova N O

Abstract

Abstract In general relativity, isolated black holes are invisible due to the infinitely large redshift of photons propagating from the event horizon to a remote observer. However, the dark shadow (silhouette) of a black hole can be visible on the background of matter radiation lensed by the gravitational field of the black hole. The black hole shadow is the celestial sphere projection of the cross section of photon capture by the black hole. If the illuminating background is far behind the black hole (at a distance much greater than the event horizon radius), a classic black hole shadow of a maximal size can also be observed. A minimal-size shadow can be observed if the same black hole is illuminated by the inner part of the accretion disk adjacent to the event horizon. In this case, the shadow of an accreting black hole is a lensed image of the northern or southern hemisphere of the event horizon, depending on the orientation of the black hole spin axis. A dark silhouette of the southern hemisphere of the event horizon is seen in the first image of the supermassive black hole M87* presented by the Event Horizon Telescope. The brightness of accretion matter is much higher than the corresponding one of the usual astrophysical stationary background in the form of numerous stars or extensive hot gas clouds. For this reason, it is improbable that a black hole shadow can be observed in the presence of very luminous accretion matter.

Publisher

Uspekhi Fizicheskikh Nauk (UFN) Journal

Subject

General Physics and Astronomy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Images of Black Holes Viewed by a Distant Observer;Gravitation and Cosmology;2024-08-23

2. Constraining photon trajectories in black hole shadows;The European Physical Journal Plus;2024-06-17

3. Shadows of a generic class of spherically symmetric, static spacetimes;The European Physical Journal Plus;2024-03-05

4. Image of a Black Hole Illuminated by a Parabolic Screen;Astronomy Reports;2024-01

5. Nonlinear electrodynamical lensing of electromagnetic waves on the dipole magnetic field of the magnetar;International Journal of Modern Physics D;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3