Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization

Author:

Novikov I D,Likhachev S F,Shchekinov Yu A,Andrianov A S,Baryshev A M,Vasyunin A I,Wiebe D Z,Graauw Th de,Doroshkevich A G,Zinchenko I I,Kardashev N S,Kostenko V I,Larchenkova T I,Likhacheva L N,Lyakhovets A O,Novikov D I,Pilipenko S V,Punanova A F,Rudnitsky A G,Smirnov A V,Shematovich V I

Abstract

Abstract We present the scientific program of the Spectr-M project aimed at the creation and operation of the Millimetron Space Observatory (MSO) planned for launch in the late 2020s. The unique technical capabilities of the observatory will enable broadband observations of astronomical objects from 50 μm to 10 mm wavelengths with a record sensitivity (up to ∼ 0.1 μJy) in the single-dish mode and with an unprecedented high angular resolution (∼ 0.1 μas) in the ground-space very long baseline interferometer (SVLBI) regime. The program addresses fundamental priority issues of astrophysics and physics in general that can be solved only with the MSO capabilities: 1) the study of physical processes in the early Universe up to redshifts z ∼ 2 × 106 through measuring μ-distortions of the cosmic microwave background (CMB) spectrum, and investigation of the structure and evolution of the Universe at redshifts z < 15 by measuring y-distortions of the CMB spectrum; 2) the investigation of the geometry of space-time around supermassive black holes (SMBHs) in the center of our Galaxy and M87 by imaging surrounding shadows, the study of plasma properties in the shadow formation regions, and the search for observational manifestations of wormholes; 3) the study of observational manifestations of the origin of life in the Universe — the search for water and biomarkers in the Galactic interstellar medium. Moreover, the technical capabilities of the MSO can help solve related problems, including the birth of the first galaxies and SMBHs (z ≳ 10), alternative approaches to measuring the Hubble constant, the physics of SMBHs in ‘dusty’ galactic nuclei, the study of protoplanetary disks and water transport in them, and the study of ‘ocean worlds’ in the Solar System.

Publisher

Uspekhi Fizicheskikh Nauk (UFN) Journal

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3