Author:
Tsednee Tsogbayar,Tsednee Banzragch,Khinayat Tsookhuu
Abstract
In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.
Publisher
Mongolian Journals Online
Reference18 articles.
1. L.P. Pitaevskii, Vortex lines in the imperfect Bose-gas, Zh. Eksp. Teor. Fiz. 40, (1961), pp. 646-649.
2. E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20, (1961), pp. 454-477, https://doi.org/10.1007/BF02731494
3. S.N. Bose, Planck’s Law and Light Quantum Hypothesis, Z. Phys, 26 (1924), pp. 178-181. https://doi.org/10.1007/BF01327326
4. A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss. 1925 (1925), pp. 3-14.
5. M.H. Anderson, J. R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, (1995), pp. 198-201, https://doi.org/10.1126/science.269.5221.198