Affiliation:
1. Regenerative Engineering Laboratory, Section for Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University, 630 W 168 St – VC12–230, New York, NY 10032, USA
Abstract
3D printing is an emerging tool to fabricate scaffolds for tissue engineering and regenerative medicine, benefited by customized design, tunable internal microstructure and a wide range of applicable materials. As a recent technical advancement, 3D-printed scaffolds have been incorporated with a controlled delivery of growth factors and/or other bioactive cues to facilitate tissue regeneration, in addition to providing a temporal structural substrate for cell and tissue ingrowth. This review covers a number of the existing approaches to incorporate a controlled delivery system in 3D-printed scaffolds from hydrogel adsorption and surface coating to chemical integration and embedding microspheres. In addition, we discuss the advantages and disadvantages of each delivery method integrated in 3D-printed scaffolds, outstanding challenges and future directions.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献