DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles

Author:

Asharani PV12,Xinyi Ng1,Hande M Prakash2,Valiyaveettil Suresh1

Affiliation:

1. Department of Chemistry, Faculty of Science, 3 Science Drive 3, National University of Singapore, 117543, Singapore.

2. Department of Physiology, Yong Loo Lin School of Medicine, 2 Medical Drive, National University of Singapore, 117597, Singapore

Abstract

Aim: Platinum-based therapeutic agents are widely used in medicine. Thus, a thorough understanding of their mechanism of action in cells is warranted. This study investigates the uptake and bioactivity (e.g., cytotoxicity, genotoxicity and protein expression) of platinum nanoparticles (Pt-NPs, ∼5–8 nm in size) in human cells. Materials & methods: Pt-NPs capped with polyvinyl alcohol were synthesized, characterized and incubated with human cells. Uptake and the biological properties were evaluated through metabolic activity, genome integrity, cell cycle and protein expression. Results: Pt-NPs entered the cells through diffusion, and localized inside the cytoplasm. Exposure to the Pt-NP increased DNA damage, accumulation of cells at the S-phase of the cell cycle and apoptosis. A significant number of cells recovered from the stress and formed colonies. Protein-expression levels uncovered upregulation of p53, phosphorylated p53, p21 and downregulation of proliferating cell nuclear antigen following Pt-NP treatment. Pro-caspase 3 and poly-ADP ribose polymerase and cyclin B levels were not altered in both the cell types after Pt-NP exposure. Conclusion: The results suggest p53 activation in Pt-NP-treated cells due to genotoxic stress, with subsequent activation of p21 leading to a proliferating cell nuclear antigen-mediated growth arrest and apoptosis. This study recommends development of Pt-NP-based anticancer agents by appropriate surface modifications to augment its innate anticancer activity.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3