Affiliation:
1. Advanced Technologies & Surgery Branch, Division of Cardiovascular Diseases, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Suite 8216, Bethesda, MD 20892, USA.
Abstract
Nanotechnology provides a broad range of opportunities to develop new solutions for clinical problems. For the pulmonary field, nanotechnology promises better delivery of drugs and nucleic acid-based therapeutics to disease sites. Administration of therapeutics via inhalation provides the opportunity for direct delivery to the lung epithelium, the lining of the respiratory tract. By appropriate selection of particle size, deep lung delivery can be obtained with control of phagocytic uptake, the removal of particles by resident macrophages. Nanotechnology can also help in pulmonary therapies administered by intravenous and oral routes through targeting specific cell types and controlling bioavailability and release kinetics. In the hematology field, nanotechnology can counter multiple drug resistance in leukemia by blocking drug efflux from cancer cells, and provide effective delivery of siRNA into lymphocytes to block apoptosis in sepsis. Controlling the surface properties of materials on devices such as valves and stents promises improved biocompatibility by inhibition of thrombosis, the formation of blood clots, and regulating cell adhesion and activation. Nanoparticle-based thrombolytic agents have the potential to improve the effectiveness of clot removal. Treatment of both lung and blood diseases is also likely to benefit from nano-scaffold-based methods for controlling the differentiation and proliferation of stem and progenitor cells.
Subject
Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献