Methotrexate-loaded SLNs prepared by coacervation technique: in vitro cytotoxicity and in vivo pharmacokinetics and biodistribution

Author:

Battaglia Luigi1,Serpe Loredana2,Muntoni Elisabetta2,Zara GianPaolo2,Trotta Michele1,Gallarate Marina

Affiliation:

1. Università degli Studi di Torino – Dipartimento di Scienza e Tecnologia del Farmaco – via Pietro Giuria 9, Torino, Italy

2. Università degli Studi di Torino – Dipartimento di Anatomia, Farmacologia e Medicina Legale – Via Pietro Giuria 13, Torino, Italy

Abstract

Aim: Recently, ‘coacervation’ has been proposed as a new method to prepare fatty acid solid lipid nanoparticles (SLNs). The aim of this work was to encapsulate methotrexate, a hydrophilic anticancer drug, within SLNs obtained by coacervation, through hydrophobic ion pairing and to evaluate the potential efficacy in in vitro and in vivo breast tumor models of drug-loaded nanoparticles. Materials & Methods: Methotrexate-loaded SLN efficacy was evaluated in vitro towards MCF-7 and Mat B-III cell lines (human and murine breast tumor cell lines). Pharmacokinetics of drug-loaded nanoparticles was evaluated in male Wistar rats and biodistribution in a breast tumor model (Mat B-III) in female Fisher rats. Results: Drug- loaded SLNs showed an increased cytotoxicity towards MCF-7 and Mat B-III cell lines compared with free drug. After intravenous administration, drug plasmatic concentration was increased and a major drug accumulation within neoplastic tissue was shown when the drug was loaded in SLNs, compared with drug solution alone. Encapsulation of the drug within nanoparticles also increased its oral uptake after duodenal administration. Conclusion: SLNs are promising vehicles for the delivery of methotrexate, since an increase of efficacy in vitro and a preferential accumulation in breast cancer in vivo were shown. Original submitted 29 October 2010; Revision submitted 19 March 2011

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference35 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3