Chondrogenic differentiation of mesenchymal stem cells on silk fibroin:chitosan–glucosamine scaffold in dynamic culture

Author:

Agrawal Parinita1,Pramanik Krishna1,Biswas Amit1

Affiliation:

1. Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India

Abstract

Aim: Cartilage damage is a common age-related problem that leads to progressive proteoglycan loss. Glucosamine stimulates proteoglycan synthesis and, therefore, its effect on the cartilage extracellular matrix synthesis over silk fibroin:chitosan (SF:CS) tissue-engineered scaffold was investigated for cartilage construct generation. Materials & methods: Human mesenchymal stem cells (hMSCs) were cultured and differentiated over SF:CS–glucosamine porous scaffold, under dynamic culture condition in spinner flask bioreactor. Results: hMSCs-seeded scaffold in dynamic culture exhibited homogenous cell distribution, proliferation and higher cell density at the core than static culture. Glucosamine in scaffold promoted proteoglycan and collagenous matrix synthesis as revealed by histological and immunofluorescence studies. Quantitative-PCR analysis showed upregulation of cartilage-specific genes, thereby confirming the chondrogenic differentiation. Conclusion: The chondrogenic differentiation of hMSCs was enhanced by the synergistic effect of glucosamine incorporated in SF:CS scaffold and influence of 3D dynamic culture environment, thereby resulting in chondrogenic phenotype of the cells that promoted cartilage regeneration.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3