Affiliation:
1. College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
Abstract
Aim: To perform a parallel comparison of key parameters affecting the safety and efficiency of lipid-based nanovectors (i.e., complexing headgroups, composition and preparation method). Materials & methods: Various cationic and ionizable headgroups were screened for formulating lipoplexes with GFP–plasmid DNA. Ethanol injection and microfluidics were used to prepare nanoparticles with GFP–plasmid DNA complexed on the surface or within the interior of lipid bilayers. Results: Lipoplexes composed of sphingomyelin 102 exhibited the highest transfection efficiency given their higher cellular uptake in BRAF inhibitor-resistant melanoma cells. Lipid nanoparticles demonstrated acceptable transfection efficiency and high spheroid penetration while protecting plasmid DNA under simulated physiological conditions. Conclusion: Selecting the right complexing lipid and preparation method is critical for developing lipid nanocarriers to treat intractable diseases.
Subject
Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献