Nanotechnological approaches for the treatment of placental dysfunction: recent trends and future perspectives

Author:

Zhao Jian1,Zhang Jungang2,Xu Yan3,Dong Juan1,Dong Qichao1,Zhao Guoqiang1,Shi Ying4

Affiliation:

1. Delivery Rooms, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, 312000, China

2. General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China

3. Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China

4. Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China

Abstract

The transitory placenta develops during pregnancy and mediates the blood flow between the mother and the developing baby. Placental dysfunction, including but not limited to placenta accreta spectrum, fetal growth restriction, preeclampsia and gestational trophoblastic disease, arises from abnormal placental development and can result in significant adverse maternal and fetal health outcomes. Unfortunately, there is a lack of treatment alternatives for these disorders. Nanocarriers offer versatility, including extended circulation, organ-specific targeting and intracellular transport, finely tuning therapeutic placental interactions. This thorough review explores nanotechnological strategies for addressing placental disorders, encompassing dysfunction insights, potential drug delivery targets and recent strides in placenta-targeted nanoparticle (NP)therapies, instilling hope for effective placental malfunction treatment.

Funder

Zhejiang Provincial Science Foundation Committee of China

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3