Prediction of optimal warfarin maintenance dose using advanced artificial neural networks

Author:

Grossi Enzo1,Podda Gian Marco2,Pugliano Mariateresa3,Gabba Silvia1,Verri Annalisa1,Carpani Giovanni4,Buscema Massimo5,Casazza Giovanni6,Cattaneo Marco3

Affiliation:

1. Centro Diagnostico Italiano, Milan, Italy

2. Centro Diagnostico Italiano, Milan, Italy.

3. Medicina III, Ospedale San Paolo – Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy

4. Centro Trasfusionale, Ospedale San Paolo, Milan, Italy

5. Semeion Research Centre, Rome, Italy

6. Dipartimento di Scienze Cliniche “L. Sacco”, Università degli Studi di Milano, Milan, Italy

Abstract

Background: In recent years, pharmacogenetic algorithms were developed for estimating the appropriate dose of vitamin K antagonists. Aim: To evaluate the performance of new generation artificial neural networks (ANNs) to predict the warfarin maintenance dose. Methods: Demographic, clinical and genetic data (CYP2C9 and VKORC1 polymorphisms) from 377 patients treated with warfarin were used. The final prediction model was based on 23 variables selected by TWIST® system within a bipartite division of the data set (training and testing) protocol. Results: The ANN algorithm reached high accuracy, with an average absolute error of 5.7 mg of the warfarin maintenance dose. In the subset of patients requiring ≤21 mg and 21–49 mg (45 and 51% of the cohort, respectively) the absolute error was 3.86 mg and 5.45 with a high percentage of subjects being correctly identified (71 and 73%, respectively). Conclusion: ANN appears to be a promising tool for vitamin K antagonist maintenance dose prediction.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Reference47 articles.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3