Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors

Author:

Tisch Ulrike1,Schlesinger Ilana2,Ionescu Radu1,Nassar Maria2,Axelrod Noa1,Robertman Dorina1,Tessler Yael1,Azar Faris1,Marmur Abraham1,Aharon-Peretz Judith3,Haick Hossam4

Affiliation:

1. The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel

2. Department of Neurology, Rambam Health Care Campus, Haifa 31096, Israel

3. Cognitive Neurology Unit, Rambam Health Care Campus, Haifa 31096, Israel

4. The Department of Chemical Engineering & Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel.

Abstract

Aim: To study the feasibility of a novel method in nanomedicine that is based on breath testing for identifying Alzheimer’s disease (AD) and Parkinson’s disease (PD), as representative examples of neurodegenerative conditions. Patients & methods: Alveolar breath was collected from 57 volunteers (AD patients, PD patients and healthy controls) and analyzed using combinations of nanomaterial-based sensors (organically functionalized carbon nanotubes and gold nanoparticles). Discriminant factor analysis was applied to detect statistically significant differences between study groups and classification success was estimated using cross-validation. The pattern identification was supported by chemical analysis of the breath samples using gas chromatography combined with mass spectrometry. Results: The combinations of sensors could clearly distinguish AD from healthy states, PD from healthy states, and AD from PD states, with a classification accuracy of 85, 78 and 84%, respectively. Gas chromatography combined with mass spectrometry analysis showed statistically significant differences in the average abundance of several volatile organic compounds in the breath of AD, PD and healthy subjects, thus supporting the breath prints observed with the sensors. Conclusion: The breath prints that were identified with combinations of nanomaterial-based sensors have future potential as cost-effective, fast and reliable biomarkers for AD and PD. Original submitted 29 January 2012; Revised submitted 8 May 2012; Published online 15 October 2012

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3