Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53

Author:

Satapathy Shakti Ranjan1,Mohapatra Purusottam1,Preet Ranjan1,Das Dipon1,Sarkar Biplab2,Choudhuri Tathagata3,Wyatt Michael D4,Kundu Chanakya Nath1

Affiliation:

1. Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India

2. Nanobiotechnology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa, 751024, India

3. Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa, 751021, India

4. Department of Pharmaceutical & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA.

Abstract

Aim: The authors have systematically investigated the anticancer potentiality of silver-based nanoparticles (AgNPs) and the mechanism underlying their biological activity in human colon cancer cells. Materials & methods: Starch-capped AgNPs were synthesized, characterized and their biological activity evaluated through multiple biochemical assays. Results: AgNPs decreased the growth and viability of HCT116 colon cancer cells. AgNP exposure increased apoptosis, as demonstrated by an increase in 4´,6-diamidino-2-phenylindole-stained apoptotic nuclei, BAX/BCL-XL ratio, cleaved poly(ADP-ribose) polymerase, p53, p21 and caspases 3, 8 and 9, and by a decrease in the levels of AKT and NF-κB. The cell population in the G1 phase decreased, and the S-phase population increased after AgNP treatment. AgNPs caused DNA damage and reduced the interaction between p53 and NF-κB. Interestingly, no significant alteration was noted in the levels of p21, BAX/BCL-XL and NF-κB after AgNP treatment in a p53-knockout HCT116 cell line. Conclusion: AgNPs are bona fide anticancer agents that act in a p53-dependent manner. Original submitted 16 March 2012; Revised submitted 25 August 2012; Published online 21 March 2013

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3