Pathway-based pharmacogenomics of gemcitabine pharmacokinetics in patients with solid tumors

Author:

Mitra Amit K1,Kirstein Mark N123,Khatri Amit1,Skubitz Keith M34,Dudek Arkadiusz Z34,Greeno Edward W34,Kratzke Robert A34,Lamba Jatinder K5

Affiliation:

1. Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA

2. PUMA-Institute of Personalized Medicine, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA

3. Masonic Comprehensive Cancer Center, University of Minnesota Minneapolis, MN, USA

4. Division of Hematology, Oncology & Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, USA

5. Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.

Abstract

Aim: The aim of this study was to evaluate the association of gemcitabine pathway SNPs with detailed pharmacokinetic measures obtained from solid tumor patients receiving gemcitabine-based therapy. Materials & methods: SNPs within nine gemcitabine pathway genes, namely CDA, CMPK, DCK, DCTD, NT5C2, NT5C3, SLC28A1, SLC28A3 and SLC29A1 were analyzed for association with gemcitabine pharmacokinetics. Results: Significant association of gemcitabine clearance with SNPs in NT5C2 was identified. Clearance of 2´,2´-difluorodeoxyuridine, a gemcitabine metabolite was significantly predicted by CDA, SLC29A1 and NT5C2 SNPs. This study reports an association of formation clearance of 2´,2´-difluoro-2´-deoxycytidine triphosphate, an active form of gemcitabine with SNPs within uptake transporters SLC28A1, SLC28A3 and SLC29A1. Conclusion: Genetic variation in gemcitabine pathway genes is associated with its pharmacokinetics and hence could influence gemcitabine response. Our study identified pharmacogenetic markers that could be further tested in larger patient cohorts and could open up opportunities to individualize therapy in solid tumor patients. Original submitted 10 February 2012; Revision submitted 27 April 2012

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3