Novel and existing flexible survival methods for network meta-analyses

Author:

Heeg Bart1ORCID,Garcia Andrea1ORCID,Beekhuizen Sophie van1,Verhoek Andre1ORCID,Oostrum Ilse van1,Roychoudhury Satrajit2ORCID,Cappelleri Joseph Christopher3ORCID,Postma Maarten Jacobus4ORCID,Nicolaas Martinus Ouwens Mario Johannes5ORCID

Affiliation:

1. Cytel, 3012 NJ, Rotterdam, The Netherlands

2. Pfizer, Inc., 235 E 42nd St, New York, NY 10017, USA

3. Pfizer, Inc., 445 Eastern Point Road, MS 8260-2502, Groton, CT 06340, USA

4. Unit of Global Health, Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands

5. Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics & Business, Groningen, The Netherlands Nettelbosje 2, 9747 AE, Groningen, The Netherlands

Abstract

Aim: Technical Support Document 21 discusses trial-based, flexible relative survival models. The authors generalized flexible relative survival models to the network meta-analysis (NMA) setting while accounting for different treatment-effect specifications. Methods: The authors compared the standard parametric model with mixture, mixture cure and nonmixture cure, piecewise, splines and fractional polynomial models. The optimal treatment-effect parametrization was defined in two steps. First, all models were run with treatment effects on all parameters and subsequently the optimal model was defined by removing uncertain treatment effects, for which the parameter was smaller than its standard deviation. The authors used a network in previously treated advanced non-small-cell lung cancer. Results: Flexible model-based NMAs impact fit and incremental mean survival and they increase corresponding uncertainty. Treatment-effect specification impacts incremental survival, reduces uncertainty and improves the fit statistic. Conclusion: Extrapolation techniques already available for individual trials can now be used for NMAs to ensure that the most plausible extrapolations are being used for health technology assessment submissions.

Publisher

Becaris Publishing Limited

Subject

Health Policy

Reference51 articles.

1. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-analysis of Randomised Controlled Trials. NICE, London, UK (2011).

2. NICE DSU Technical Support Document 14: Survival Analysis for Economic Evaluations alongside Clinical Trials – Extrapolation with Patient-Level Data. NICE, London, UK (2011).

3. Guidelines for the Economic Evaluation of Health Technologies: Canada. Canadian Agency for Drugs and Technologies in Health. Ottowa, Canada (2017).

4. Guidelines for Preparing Submissions to the Pharmaceutical Benefits Advisory Committee (PBAC). Version 5.0, September 2016. Department of Health, Canberra Australia (2016).

5. Technology Appraisal Guidance [TA517] – Avelumab for Treating Metastatic Merkel Cell Carcinoma. NICE, London, UK (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3