Development and validation of the trans-omics model for pancreatic adenocarcinoma

Author:

Huang Weiguo12,Weng Wanqing12,Wu Boda12,Ye Tingbo1,Lin Zhuo3ORCID,Zhang Zhongjing1,Shi Keqing2

Affiliation:

1. Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China

2. Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China

3. Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China

Abstract

Aim: To develop a trans-omics-based molecular clinicopathological algorithm for predicting pancreatic adenocarcinoma prognosis, we performed a comprehensive analysis of the expression levels of mRNA, DNA methylation and DNA copy number in The Cancer Genome Atlas dataset. Materials & methods: Based on the least absolute shrinkage and selection operator method – COX regression analysis, a trans-omics-based classifier was established to predict overall survival. Nomogram was constructed by combining the classifier band clinical pathological characterization. Results: Based on trans-omics, we developed a 10-gene-based classifier and a molecular-clinicopathologic nomogram for predicting overall survival with satisfactory accuracy. Conclusion: Trans-omics-based classifier and molecule-clinicopathological nomogram based on the classifier can accurately predict the prognosis of pancreatic adenocarcinoma patients

Funder

Key projects of Wenzhou Science and Technology Bureau

Provinces and Ministries Co-Contribution of Zhejiang, China

The Natural Science Foundation of Zhejiang Province

National Natural Sciences Foundation of China

Publisher

Future Medicine Ltd

Subject

Cancer Research,Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3