Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

Author:

Lim YujinORCID,Le Viet DinhORCID,Bahati Pierre AnthymeORCID

Abstract

A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels—the terramechanics—is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker’s semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.

Publisher

The Korean Space Science Society

Subject

General Earth and Planetary Sciences,General Physics and Astronomy

Reference30 articles.

1. Andrade J, Lindemann R, Iagnemma K, XTerramechanics: integrated simulation of planetary surface missions, in Keck Institute for Space Studies Workshop, California Institute of Technology, Pasadena, CA, 20 Jun-3 Aug 2011.

2. Bekker MG, Introduction to Terrain-Vehicle Systems (University of Michigan Press, Ann Arbor, MI, 1969).

3. Bekker MG, Off-the-Road Locomotion: Research and Development in Terramechanics (The University of Michigan Press, Ann Arbor, MI, 1960).

4. Bekker MG, Theory of Land Locomotion; the Mechanics of Vehicle Mobility (University of Michigan Press, Ann Arbor, MI, 1956).

5. Bernstein R. Probleme zur experimentellen motor pflug mechanik, Der Motorwagen. 16, 199-206 (1913).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3