A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

Author:

Park KihongORCID,Kim KyunghoORCID,Cho KihyeonORCID

Abstract

The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e– → AʹAʹ and e+e– → AʹAʹγ where dark photon Aʹ decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

Publisher

The Korean Space Science Society

Subject

General Earth and Planetary Sciences,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3