A Sufficient Descent Dai-Liao Type Conjugate Gradient Update Parameter

Author:

Onuoha Oluwaseun B.1

Affiliation:

1. Department of Mathematical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria

Abstract

In recent years, conjugate gradient methods have gained popularity as efficient iterative techniques for unconstrained optimization problems without the need for matrix storage. Based on the Dai-Laio conjugacy condition, this article presents a new hybrid conjugate gradient method that combines features of the Dai-Yuan and Dai-Laio methods. The proposed method addresses the numerical instability and slow convergence of the Dai-Yuan method as well as the potential poor performance of the Dai-Laio method in highly non-linear optimization problems. The hybrid method solves optimization problems with faster convergence rates and greater stability by combining the advantages of both methods. The resulting algorithm is shown to be more effective and reliable, and theoretical analysis reveals that it has sufficient descent properties. The proposed method's competitive performance is shown through a number of benchmark tests and comparisons with other approaches, indicating that it has the potential to be an effective approach for complex, unconstrained optimization.

Publisher

Earthline Publishers

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3