Affiliation:
1. Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey
Abstract
In the present paper, we have studied the curvature tensors of $(k,\mu)$-paracontact manifold satisfying the conditions $\widetilde{Z}\cdot \widetilde{C}=0$, \ $R\cdot \widetilde{C} =0 $, \ $P\cdot \widetilde{C}=0$ and $\widetilde{C}\cdot\widetilde{C}=0.$ According these cases, $(k,\mu)$-paracontact manifolds have been characterized.
Reference18 articles.
1. Arslan, K., Murathan, C., & Özgür, C. (2000). On contact manifolds satisfying certain curvature conditions. Annales Universitatis Bucuresti. Mathematica, 49(2), 17-26.
2. Atçeken, M. (2014). On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor. Bulletin of Mathematical Analysis and Applications, 6(1), 1-8.
3. Atçeken, M., & Uygun, P. (2020). Characterizations for totally geodesic submanifolds of (k, μ)-paracontact metric manifolds. Korean Journal of Mathematics, 28, 555-571.
4. Calvaruso, G. (2011). Homogeneous paracontact metric three-manifolds. Illinois Journal of Mathematics, 55, 697-718. https://doi.org/10.1215/ijm/1359762409
5. Cappeletti-Montano, B., & Di Terlizzi, L. (2010). Geometric structure associated to a contact metric (k, μ)-space. Pacific Journal of Mathematics, 246(2), 257-292. https://doi.org/10.2140/pjm.2010.246.257