Gamma Spectroscopy Prototype Design to Identify Radioactive Elements

Author:

Djokorayono Rony,Sulaksono Santiko Tri,Seno Haryo,Utomo ,Saptowati Hasriyasti,Santoso Puji,Hermana Ferly,Wiranto BS ,Sumaryanto Agus

Abstract

The identification system for radioactive elements used the single-channel analyzer (SCA) gamma spectroscopy method. However, the process of producing the spectrum was still quite long because it had to go through the process manually by scanning its energy; one of the other radioactive elements is gamma spectroscopy. This research aims to develop a prototype gamma spectroscopy that allows the identification of radioactive elements. In this study, researchers used an experimental method by designing a gamma spectroscopy prototype consisting of a 2.5 cm diameter NaI(TL) detector equipped with a photomultiplier, high voltage module, preamp module, pulse shaping module, sample hold module, and Atmega microcontroller with an LCD display resolution of 128 × 64. The results of testing this prototype were carried out with various radioactive samples. Researchers managed to identify radioactive elements by measuring electrical pulses produced by NaI(TL) detectors. Background counting, which is the result of enumeration from detectors without radioactive material, was identified and eliminated. The distribution pattern has a random nature, the energy resolution of the spectroscopy consists of 1024 channels, and the counting time can be set as needed via the reset button. The main finding of the study was that the gamma spectroscopy prototype was able to provide a clear picture of the energy spectrum of nuclear radiation, allowing good identification of radioactive elements. The results of this study have important implications in the field of identification of radioactive elements and can be used in a variety of scientific and industrial applications involving nuclear radiation.

Publisher

Universitas Pendidikan Ganesha

Reference47 articles.

1. Amoyal, G., Schoepff, V., Carrel, F., Michel, M., De Lanaute, N. B., & Angélique, J. C. (2021). Development of a hybrid gamma camera based on Timepix3 for nuclear industry applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 987, 164838. https://doi.org/10.1016/j.nima.2020.164838.

2. Aryanti, C. A., Suseno, H., Muslim, M., Prihatiningsih, W. R., & Aini, S. N. (2022). Potential Radiological Dose of 210 Po to Several Marine Organisms in Coastal Area of Coal-Fired Power Plant Tanjung Awar-Awar, Tuban. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 27(1), 73–82. https://doi.org/10.14710/ik.ijms.27.1.73-82.

3. Bhattacharyya, R., Maulik, A., Adak, R. P., Roy, S., Bhattacharya, T. S., Biswas, S., & Syam, D. (2021). Attenuation of electromagnetic radiation in Nuclear Track Detectors. Journal of Instrumentation, 16(6). https://doi.org/10.1088/1748-0221/16/06/T06001.

4. Buonanno, L., Di Vita, D., Carminati, M., & Fiorini, C. (2020). A directional gamma-ray spectrometer with microcontroller-embedded machine learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10(4), 433–443. https://doi.org/10.1109/JETCAS.2020.3029570.

5. Caridi, F., D’Agostino, M., Belvedere, A., Marguccio, S., Belmusto, G., & Gatto, M. F. (2016). Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations. Journal of Instrumentation, 11(10), C10012. https://doi.org/10.1088/1748-0221/11/10/C10012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3