Analysis of Middle School Mathematics Applications Textbook Activities Based on Model-Eliciting Principles

Author:

KARAMAN DÜNDAR Rüveyda1ORCID,BORA Rabia Betül1ORCID

Affiliation:

1. BARTIN UNIVERSITY

Abstract

Model-eliciting activities (MEA) represent a distinct form of problem-solving exercises that deviate from conventional problem-solving approaches. They encompass complex real-life scenarios characterized by multiple feasible solutions, demanding non-routine thinking with open-ended possibilities. Lesh and Doerr (2003) posit that MEA conform to specific principles, encompassing model construction, reality, self-evaluation, model externalization (construct certification), model generalization, and effective prototype principles. This study examines the compatibility of tasks in Turkey's middle school mathematics applications textbooks (grades 5-8) with the principles of model-eliciting activities (MEA). The analysis focuses on five principles: reality, model construction, self-evaluation, model documentation, and model generalization. The findings reveal varying degrees of compatibility across different grades. The reality and model generalization principles show more robust compatibility, while the model construction and model documentation principles have mixed levels of compatibility. The self-evaluation principle demonstrates varied compatibility. The study highlights strengths and areas for improvement in the tasks' alignment with MEA principles and emphasizes the importance of real-life relevance and model application. Suggestions are made to enhance explicit guidance in model construction and documentation. The study provides implications for curriculum design, teacher professional development, instructional strategies, student engagement, assessment practices, and future research in mathematics education. However, limitations, such as the absence of student perspectives and contextual factors, should be considered when interpreting the findings.

Funder

N/A

Publisher

Bartin Universitesi

Reference40 articles.

1. Alacacı, C. (2015). Matematik Ders Kitabı Tasarımında Temel Unsurlar ve Matematiksel Modelleme. Türk Bilgisayar ve Matematik Eğitimi Sempozyumu, 124.

2. Altun, M., Arslan, Ç., & Yazgan, Y. (2004). Lise matematik ders kitaplarının kullanım şekli ve sıklığı üzerine bir çalışma. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 17(2), 131-147.

3. Blum, W., & Borromeo Ferri, R. (2009) Mathematical modelling: Can it be taught and learnt?, Journal of Mathematical Modelling and Application, 1(1), 45-58.

4. Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems. In C. Haines, P. Galbraith, W. Blum and S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics - ICTMA 12, 222-231. Chichester: Horwood Publishing.

5. Borromeo Ferri, R. (2017). Learning how to teach mathematical modeling in school and teacher education. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3