Model-and Full-Scale URANS Simulations of Athena Resistance, Powering, Seakeeping, and 5415 Maneuvering

Author:

Bhushan Shanti1,Xing Tao1,Carrica Pablo1,Stern Frederick1

Affiliation:

1. The University of Iowa

Abstract

This study demonstrates the versatility of a two-point, multilayer wall function in computing model-and full-scale ship flows with wall roughness and pressure gradient effects. The wall-function model is validated for smooth flat-plate flows at Reynolds numbers up to 109, and it is applied to the Athena R/V for resistance, propulsion, and seakeeping calculations and to fully appended DTMB 5415 for a maneuvering simulation. Resistance predictions for Athena bare hull with skeg at the model scale compare well with the near-wall turbulence model results and experimental fluid dynamics (EFD) data. For full-scale simulations, frictional resistance coefficient predictions using smooth wall are in good agreement with the International Towing Tank Conference (ITTC) line. Rough-wall simulations show higher frictional and total resistance coefficients, where the former is found to be in good agreement with the ITTC correlation allowance. Self-propelled simulations for the fully appended Athena performed at full scale using rough-wall conditions compare well with full-scale data extrapolated from model-scale measurements using the ITTC ship-model correlation line including a correlation allowance. Full-scale computations are performed for the towed fully appended Athena free to sink and trim and the boundary layer and wake profiles are compared with full-scale EFD data. Rough-wall results are found to be in better agree-ment with the EFD data than the smooth-wall results. Seakeeping calculations are performed for the demonstration purpose at both model-and full-scale. Maneuvering calculation shows slightly more efficient rudder action, lower heading angle overshoots, and lower roll damping for full-scale than shown by the model scale.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3