Tacking in the Wind Tunnel

Author:

Gerhardt Frederik C.1,Le Pelley David1,Flay Richard G. J.1,Richards Peter1

Affiliation:

1. The University of Auckland

Abstract

In recent years a number of Dynamic Velocity Prediction Programs (DVPPs), which allow studying the behaviour of a yacht while tacking, have been developed. The aerodynamic models used in DVPPs usually suffer from a lack of available data on the behaviour of the sail forces at very low apparent wind angles where the sails are flogging. In this paper measured aerodynamic force and moment coefficients for apparent wind angles between 0° and 30° are presented. Tests were carried out in the University of Auckland’s Twisted Flow Wind Tunnel in a quasi-steady manner for stepwise changes of the apparent wind angle. Test results for different tacking scenarios (genoa flogging or backed) are presented and discussed and it is found that a backed headsail does not necessarily produce more drag than a flogging headsail but increases the beneficial yawing moment significantly. The quasisteady approach used in the wind tunnel tests does not account for unsteady effects like the aerodynamic inertia in roll due to the “added mass” of the sails. In the second part of paper the added mass moment of inertia of a mainsail is estimated by “strip theory” and found to be significant. Using expressions from the literature the order of magnitude of three-dimensional effects neglected in strip theory is then assessed. To further quantify the added inertia experiments with a mainsail model were carried out. Results from those tests are presented at the end of the paper and indicate that the added inertia is about 76 % of what strip theory predicts.

Publisher

SNAME

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3