Affiliation:
1. National Taiwan Ocean University, Keelung
2. Ship and Ocean Industries R&D Center
Abstract
The objective of this paper is to predict the noise radiated from submarine propellers with different control surface types (the cross- and X-type). When the propellers are free from cavitation, such as those of submarines at a diving depth, the radiated noise dominate, due to unsteady propeller forces. A well-known submarine model (DARPA SUBOFF) is taken as the computing sample. Simulations for hydrodynamics, including stern wakes and unsteady propeller forces, are carried out by using CFD (Computational Fluid Dynamics) technology, and the results are compared with the experimental data. The accuracy of the predicted noise depends on the CFD results. Comparisons between the CFD results and the experimental data are in good agreement. The CFD results are treated as dipole strengths in the linear wave theory to predict the radiated noise caused by the unsteady forces of the propeller. It is found that, when the control surface is of the X-type, the propeller inflow is more uniform, and the radiated noise can be decreased by about 5 dB compared to the cruciform control surface.
Introduction
When submarines are at diving depth, the noise generated by unsteady propeller forces (i.e., dipole strengths) will dominate. Because the juncture vortex caused by the sail makes the propeller inflow more nonuniform, the dipole strength will be enhanced and the radiated noise will be more noticeable. The uniformity of the wake field at the stern should be controlled well in order to restrain the radiated noise.
Publisher
The Society of Naval Architects and Marine Engineers
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering