Reaching IMO 2050 GHG Targets Exclusively Through Energy Efficiency Measures

Author:

Lindstad Elizabeth1,Polic Dražen2,Rialland Agathe1,Sandaas Inge1,Stokke Tor3

Affiliation:

1. SINTEF Ocean, Marine Technology Centre, Trondheim

2. Norwegian University of Science and Technology, Trondheim

3. Stokke Marine, Tveit

Abstract

_ Maritime transport accounts for around 3% of global anthropogenic greenhouse gas (GHG) emissions (Well-to-Wake). These GHG emissions must be reduced by at least 50% in absolute values by 2050 to contribute to the ambitions of the Paris Agreement signed in 2015. Switching to zero-carbon fuels made from renewable sources (hydro, wind, or solar) is seen by many as the most promising option to deliver the desired GHG reductions. However, renewable energy is a scarce resource that gives a much larger GHG reduction spent within other sectors. This study explores how to reach the IMO 2050 GHG targets exclusively through energy efficiency measures. The results indicate that by combining wind-assisted ship propulsion (WASP) with a slender hull form, fuel consumption and GHG emissions can be reduced by 30–35%, at a negative abatement cost for speeds exceeding 8 knots. Where the cost saving increases with the speed because at higher speeds, the fuel accounts for a higher share of the total cost, which implies that the cost saving goes from zero at 8 knots, to 5% reduction at 11 knots average speed to 14% reduction of total cost with 15 knots average speed. In comparison, GHG reductions through zero-carbon fuels will increase transport costs by 50–200%. Introduction From the first days of our civilization, sea transport has enabled regional and global trades. Today, sea transport accounts for 80% of the global trade measured in ton-miles (UNCTAD 2021) and 3% of greenhouse gas (GHG) emissions measured Well-to-Wake (Lindstad et al. 2021). More than 40% of this sea trade is performed by dry bulkers, making them the real workhorses of the sea. Even though sea transport is energy efficient compared to other transport modes, all sectors need to reduce their GHG emissions by at least 50% in absolute values by 2050 to contribute to the Paris Agreement (UNFCCC 2015). According to Bouman et al. (2017), the desired energy and GHG reductions can be achieved through: Design and other technical improvements of ships; Operational improvements; Fuels with zero or low GHG footprints; or a combination of these.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3