Wind-Tunnel Investigation of the ILCA 7 MKII Sail in Downwind Conditions

Author:

Magnander Gustaf1,Larsson Lars1

Affiliation:

1. Chalmers University of Technology

Abstract

Aerodynamic coefficients from wind-tunnel tests are presented for the ILCA 7 in all six degrees of freedom. Two apparent wind speeds are considered: a light wind case corresponding to 4 m s-1 at full scale and a strong wind case corresponding to 7 m s-1. The light wind tests comprise five apparent wind angles, seven sheet angles, three kicker trims and three heel angles. For the strong wind case the dinghy is assumed sailing upright and only dead downwind, but with four sheet angles and three kicker trims. The scale is 1/7, which gives a reasonable blockage in the wind-tunnel. Blockage corrections are obtained using CFD. Correct scaling of the sail stretch, and mast bend is achieved with the full-scale sail cloth and a solid stainless-steel mast exposed to a wind speed √7 times larger than at full-scale. However, the Reynolds number is √7 times smaller. The main result of the investigation is the comprehensive data set, which is available on a public server. This data can be used in a VPP to optimise downwind sailing in smooth water. Several interesting conclusions can also be drawn directly from the data. Thus, for the light wind case the best sheet angle is 90° regardless of the course sailed. However, for the strong wind case (dead downwind), the best angle is 80°. In all cases the tight kicker trim produces the largest drive force and in the light wind case also the smallest side force.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of autonomous sailboat sails and future perspectives: A review;Renewable and Sustainable Energy Reviews;2025-01

2. Aerodynamic performance of an OPTIMIST full-scale sail for various sail trims: An experimental study;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3