A New Perspective on the Complexity of On-board Primary Power Systems

Author:

Georgescu Ioana1,Godjevac Milinko1,Visser Klaas1

Affiliation:

1. Delft University of Technology

Abstract

The applicability of different selection methods for power systems on board ships is highly dependent on the number of options possible. With the introduction of new technologies in the maritime sector, this number is increasing. However, its exact value, or even its order of magnitude is still unknown. This article shows the complexity of modern on-board power system by quantifying the number of possible system configurations currently available. A constraint satisfaction algorithm generates different configurations and the results are supported by combinatorics principles. The set of constraints used led to a significant reduction in the design space, and the influence of each of the constraints is investigated independently. Traditional mechanical propulsion is present in less than 1% of the generated configurations, whereas electric and hybrid propulsion are dominant. In particular, the impact of energy storage on the size of the design space is made evident. The order of magnitude of the total number of configurations obtained supports the use of modern selection methods instead of ones based on expert intuition and past experience. The presented work offers a tool to determine and restrict the size of the design space. It can therefore be integrated into existing selection methods and is a starting point for the development of new ones. 1. Introduction Ship design has undergone drastic changes in recent years as computers are used more and more to manage the large number of design choices. Until recently, the configuration of the on-board power system has been a relatively straight forward decision because of the predominance of mechanical propulsion. However, several new technologies have been developed in recent years, most of which aim to improve the energy systems on board ships. Several more are currently under development. Modern on-board power systems may have an alternative energy source through different fuels, more complex configurations sometimes including energy storage, exhaust-gas treatment or a combination of these.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3