Maximum Air Suction Into a Louvered Funnel Through Optimum Design

Author:

Mishra Dipti P.1,Dash Sukanta K.2

Affiliation:

1. SOA University

2. Indian Institute of Technology

Abstract

The rate of air suction into a louvered cylindrical funnel with lateral openings has been computed numerically by solving the equations of conservation of mass, momentum, and energy along with the two k-z turbulence closure equations. It was found that the air suction rate into a louvered funnel can be maximum for an optimum nozzle protrusion length into the funnel irrespective of the nozzle fluid temperature. There also exists an optimum funnel diameter (irrespective of the nozzle fluid temperature) and funnel height for which the air suction rate can be the maximum. Keeping the volume of the funnel constant, the shape of the funnel was changed to a frustum. It was found that an inverted frustum with a value of r1/r2 = 0.8 could suck the maximum amount of air compared to a cylindrical funnel of the same volume. The cylindrical sucking funnel has interestingly a much shorter entrance length compared to a simple pipe flow case with the same entrance Reynolds number. The entrance length for the sucking funnel is also a function of the nozzle fluid temperature, and a simple relation for the entrance length as a function of Ren and Tn/T∞ could also be developed for a sucking funnel. Numerical experiments were done for an inclined funnel to compute the mass suction into it. It was found that for Gr/Re2 ≤ 0.4 (where Gr is the Grashof number and Re is the Reynolds number) given by the funnel inclination had no effect on the rate of mass suction while for 0.4 < Gr/Re2 < 1 the funnel inclination had marginal influence. As the value of Gr/Re2 increased beyond 1 the influence of the funnel inclination on rate of mass suction was found to be significant.

Publisher

The Society of Naval Architects and Marine Engineers

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Numerical Analysis,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3