Affections of Turbine Nozzle Cross-Sectional Area to the Marine Diesel Engine Working

Author:

Duc Luu Do, ,Quang Vinh Nguyen

Abstract

After a long period of use, some important technical parameters of the main marine diesel engines (MDE) gradually become worse, such as the turbine speed, intake pressure, exhaust temperature, engine power, and specific fuel oil consumption (SFOC). This paper studies the affections of the turbine nozzle cross-sectional area (AT) to MDE and presents a method of AT adjustment to improve the performances of MDE. A mathematical model of an engine was built based on the existent engine construction and the theory of the diesel engine working cycle and the simulation was programmed by Matlab/Simulink. This simulation model accuracy was evaluated through the comparison of simulation results and experimental data of the MDE. The accuracy testing results were acceptable (within 5%). The influences of AT on the engine working parameters and the finding optimization point were conducted by using the simulation program to study. The predicted optimization point of the nozzle was used to improve the engine’s performances on board. The integration of the simulation and experiment studies showed its effectiveness in the practical application of the marine diesel engine field.

Publisher

University of Dubrovnik

Subject

Process Chemistry and Technology,Ocean Engineering,Transportation,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3