Estimating Soil Strength Using GIS-Based Maps - A case study in Sweden

Author:

MOHTASHAMİ Sima1ORCID,HANSSON Linnea1ORCID,ELİASSON Lars1ORCID

Affiliation:

1. Skogforsk, The Swedish Forestry Research Institute

Abstract

Soil strength is an important parameter for planning of forest roads and harvesting operations. Locating roads to areas with high soil strength reduce both build and maintenance costs. Locating logging trails to high strength areas minimise soil disturbances, e.g., rutting and compaction of forest soils. GIS-based maps of soil type and soil moisture can be valuable tools to estimate soil strength. The aim of this study was to evaluate the use of soil moisture map, i.e., depth-to-water (DTW), maps and soil type maps, to estimate soil strength expressed as California bearing ratio (CBR). CBR, volumetric water content, and ground penetration depth were measured in 120 sample points, separated on three soil classes (clay-silt sediments, sand sediments, glacial till) and two soil moisture classes (wet, dry). In each point, soil samples were collected for validation of the soil type maps. There was a high conformance between soil moisture predicted by DTW maps and field measurements, but conformance of the soil type between maps and field estimates varied between soil types. For sediment soils, dry soils were consistently stronger than wet soils. Soil strength of glacial till soils was more complicated with a binary CBR distribution depending on soil stoniness. Glacial till soils possible to penetrate to 20 cm depth with the dynamic cone penetrometer had CBR values close to those for sand sediments. There is a potential to estimate soil strength from DTW and soil type maps, but these variables should preferably be complemented with other data.

Publisher

European Journal of Forest Engineering

Subject

Engineering (miscellaneous),Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3