Affiliation:
1. Mohamed Premier University
2. Cadi Ayyad University
3. Sidi Mohamed Ben Abdellah University
Abstract
Let $(T(t))_{t\geq0}$ be a $C_{0}$-semigroup of operators on a Banach space $X$. In this paper, we show that if there exists $t_0>0$ such that $T(t_0)$ has the SVEP then $(T(t))_{t\geq0}$ has the SVEP. Also, some local spectral properties for $C_0$ semigroups and theirs generators and some stabilities results are also established.
Publisher
Sociedade Paranaense de Matematica
Reference8 articles.
1. P. Aiena, C. Trapani, S. Triolo, SVEP and local specral radius formula for unbounded operators, Filomat 28:2 (2014), 263-273. https://doi.org/10.2298/FIL1402263A
2. A. Elkoutri and M. A. Taoudi, Spectre singulier pour les generateurs des semi-groupes, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), no. 7, 641-644 (French). https://doi.org/10.1016/S0764-4442(01)02021-3
3. A. Elkoutri and M. A. Taoudi, Spectral Inclusions and stability results for strongly continuous semigroups, Int. J. of Math. and Mathematical Sciences, 37 (2003), 2379-2387. https://doi.org/10.1155/S0161171203202088
4. K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.
5. I. Erdelyi and Wang Shengwang, A Local Spectral Theory for Closed Operators, Cambridge University Press (London-New York-New Rochelle-Melbourne-Sydney), 1985. https://doi.org/10.1017/CBO9780511662249