Affiliation:
1. Universidade de São Paulo
Abstract
Using Leray-Schauder degree theory we study the existence of at least one solution for the boundary value problem of the type\[\left\{\begin{array}{lll}(\varphi(u' ))' = f(t,u,u') & & \\u'(0)=u(0), \ u'(T)= bu'(0), & & \quad \quad \end{array}\right.\] where $\varphi: \mathbb{R}\rightarrow \mathbb{R}$ is a homeomorphism such that $\varphi(0)=0$, $f:\left[0, T\right]\times \mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function, $T$ a positive real number, and $b$ some non zero real number.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Sociedade Paranaense de Matematica
Reference9 articles.
1. C. Bereanu and J. Mawhin, Boundary-value problems with non-surjective ϕ-laplacian and one-sided bounded nonlinearity, Advances Differential Equations. 11 (2006), 35-60.
2. V. Bouchez and J. Mawhin, Boundary value problems for a class of first order quasilinear ordinary differential equations, Portugal. Math. (N.S). 71 (2014), 217-247.
3. D. P. D. Santos, Existence of solutions for some nonlinear problems with boundary value conditions, Abstr. Appl. Anal. doi:10.1155/2016/5283263.
4. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
5. M. del Pino, R. Manasevich and A. Mur´ua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear, Nonlinear Anal. 18 (1992), 79-92.