Affiliation:
1. College Vizioni per Arsim
2. University of Prizren
Abstract
Let $(x_k)$, for $k\in \mathbb{N}\cup \{0\}$ be a sequence of real or complex numbers and set $(EC)_{n}^{1}=\frac{1}{2^n}\sum_{j=0}^{n}{\binom{n}{j}\frac{1}{j+1}\sum_{v=0}^{j}{x_v}},$ $n\in \mathbb{N}\cup \{0\}.$ We present necessary and sufficient conditions, under which $st-\lim_{}{x_k}= L$ follows from $st-\lim_{}{(EC)_{n}^{1}} = L,$ where L is a finite number. If $(x_k)$ is a sequence of real numbers, then these are one-sided Tauberian conditions. If $(x_k)$ is a sequence of complex numbers, then these are two-sided Tauberian conditions.
Publisher
Sociedade Paranaense de Matematica
Reference9 articles.
1. 1. N.L. Braha, Tauberian conditions under which -statistical convergence follows from statistical summability (V,) , Miskolc Math. Notes 16 (2015), no. 2, 695-703.
2. 2. N.L. Braha, Tauberian Theorems under Norlund-Cesaro summability methods (357-411), Current Topics in Summability Theory and Applications, editors, Hemen Dutta and Billy E. Rhoades, Springer, 2016.
3. 3. N.L. Braha, Tauberian theorems under statistically Norlund-Cesaro summability method, to appear in JMI(Ele math Croatia).
4. 4. O.H.H. Edely and M. Mursaleen, Tauberian theorems for statistically convergent double sequences, Information Sciences 176 (2006) 875-886.
5. 5. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献