Abstract
For a set of graphs F , let H(n; F ) denote the class of non-bipartite Hamiltonian graphs on n vertices that does not contain any graph of F as a subgraph and h(n; F ) = max{E (G) : G E H(n; F )} where E (G) is the number of edges in G. In this paper we determine h(n; {84, 85, 87}) and h(n; 87) for sufficiently odd large n. Our result confirms the conjecture made in [7] for k = 3.
Publisher
Sociedade Paranaense de Matematica
Reference13 articles.
1. M. Bataineh, ”Some extremal problems in graph theory”, Ph.D. thesis, Curtin University of Technology, Australia (2007).
2. M. Bataineh, M. M. M. Jaradat and E. Al-Shboul, Edge-maximal graphs without 5-graphs. Ars Combinatoria 124 (2016) 193-207.
3. M. Bataineh, M. M. M. Jaradat and E. Al-Shboul, Edge-maximal graphs without 7-graphs, SUT Journal of Mathematics, 47, 91-103 (2011).
4. M. S. A. Bataineh, M. M. M. Jaradat and I. Y. Al-Shboul, Edge-maximal graphs with-out theta graphs of order seven: Part II, Proceeding of the Annual International Conference on Computational Mathematics, Computational Geometry& Statistics. DOI#10.5176/2251-1911 CMCGS66.
5. J. A. Bondy, Pancyclic Graphs, J. Combinatorial Theory Ser B 11, 80- 84 (1971).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Edge-maximal θ2k+1-free non-bipartite Hamiltonian graphs of odd order;AKCE International Journal of Graphs and Combinatorics;2022-09-02