Affiliation:
1. Rajiv Gandhi University
2. Eastern Mediterranean University
Abstract
The objective of this paper is to derive and analyze Bigeometric-Euler, Taylor's Bigeometric-series and Bigeometric-Runge-Kutta methods of different orders for the approximation of initial value problems of Bigeometric-differential equations.
Publisher
Sociedade Paranaense de Matematica
Reference22 articles.
1. 1. D. Aniszewska, Multiplicative Runge-Kutta methods, Nonlinear Dyn. 50, 265?272, (2007).
2. 2. A. E. Bashirov, M. Rıza, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. 1(1), 75-85, (2011).
3. 3. A. E. Bashirov, E. Mısırlı, Y. Tandogdu and A. Ozyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. 26(4), 425-438, (2011).
4. 4. A. E. Bashirov, E. M. Kurpınar and A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. 337, 36-48, (2008).
5. 5. K. Boruah, B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces, J. Math. Anal. Appl. 449(2), 1265-1285, (2017).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An anageometric time scale calculus and its some basic applications;Journal of Mathematical Analysis and Applications;2025-01
2. A new approach for the bigeometric newton method;MANAS Journal of Engineering;2023-12-25
3. On Bigeometric Laplace Integral Transform;Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2023-09-01
4. Topology on Geometric Sequence Spaces;Approximation Theory, Sequence Spaces and Applications;2022
5. Multiplicative Bessel equation and its spectral properties;Ricerche di Matematica;2021-11-16