Experimental Investigation of the Mechanical and Structural Properties of a Functionally Graded Material by Adding Alumina Nanoparticles Using A Centrifugal Technique

Author:

Abdulmajeed Adwaa Mohammed,Hamzah Ahmed FadhilORCID

Abstract

In this work, functionally graded materials were synthesized by centrifugal technique at different volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T = 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina (Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value wasat 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the functionally graded samples were enhanced by 43.69% and 52.74%, respectively, if loaded from the alumina-rich side. On the other hand, when loading (FGM) from the epoxy side, the amount of decrease in bending resistance was 122.4% while the improvement in bending modulus was 81.11% compared to pure epoxy. Scanning electron microscopy (SEM) revealed the fracture surface of the impact samples and the gradient scattering of nanoparticles in the epoxy matrix. Numerous applications can be used to manufacture the functionally graded material by centrifugal casting method, including for the manufacture of gears and all bending applications such as leaf springs.

Publisher

College of Science for Women

Subject

General Physics and Astronomy,Agricultural and Biological Sciences (miscellaneous),General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3