METHODS OF SHORT-TERM FORECASTING OF TRAFFIC FLOWS BASED ON BIG DATA

Author:

Jiang Zixiao1,Feofilova A.1

Affiliation:

1. Don State Technical University

Abstract

Short-term forecasting of traffic flows is a key technology for intelligent transport systems. The analysis of changes in the current traffic flow is aimed at supporting traffic management, since it is possible to determine traffic conditions in advance. This article examines the main directions of research on intelligent transport systems in the context of big data, classifies existing algorithms for short-term forecasting of traffic flows and analyzes the adaptability of various algorithms. The direction of research on methods of short-term forecasting of traffic flows is proposed.

Publisher

FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov

Reference4 articles.

1. L. Zhu, F. R. Yu, Y. Wang, B. Ning and T. Tang. Big Data Analytics in Intelligent Transportation Systems: A Survey // IEEE Transactions on Intelligent Transportation Systems – 2019. - № 20 (1), pp. 383-398, URL: https:// 10.1109/TITS.2018.2815678. (дата обращения: 9.01.2024), L. Zhu, F. R. Yu, Y. Wang, B. Ning and T. Tang. Big Data Analytics in Intelligent Transportation Systems: A Survey // IEEE Transactions on Intelligent Transportation Systems – 2019. - № 20 (1), pp. 383-398, URL: https:// 10.1109/TITS.2018.2815678. (data obrascheniya: 9.01.2024)

2. Агафонов А. А., Мясников В. В. Оценка и прогнозирование параметров транспортных потоков с использованием композиции методов машинного обучения и моделей прогнозирования временных рядов // КО. 2014. №3. URL: https://cyberleninka.ru/article/n/otsenka-i-prognozirovanie-parametrov-transportnyh-potokov-s-ispolzovaniem-kompozitsii-metodov-mashinnogo-obucheniya-i-modeley (дата обращения: 9.01.2024)., Agafonov A. A., Myasnikov V. V. Ocenka i prognozirovanie parametrov transportnyh potokov s ispol'zovaniem kompozicii metodov mashinnogo obucheniya i modeley prognozirovaniya vremennyh ryadov // KO. 2014. №3. URL: https://cyberleninka.ru/article/n/otsenka-i-prognozirovanie-parametrov-transportnyh-potokov-s-ispolzovaniem-kompozitsii-metodov-mashinnogo-obucheniya-i-modeley (data obrascheniya: 9.01.2024).

3. Sayed, S.A., Abdel-Hamid, Y. & Hefny, H.A. Artificial intelligence-based traffic flow prediction: a comprehensive review. // Journal of Electrical Systems and Inf Technol. – 2023. - № 10 (13). URL: https://doi.org/10.1186/s43067-023-00081-6. (дата обращения: 9.01.2024), Sayed, S.A., Abdel-Hamid, Y. & Hefny, H.A. Artificial intelligence-based traffic flow prediction: a comprehensive review. // Journal of Electrical Systems and Inf Technol. – 2023. - № 10 (13). URL: https://doi.org/10.1186/s43067-023-00081-6. (data obrascheniya: 9.01.2024)

4. Феофилова А.А. Изучение неравномерности изменения интенсивности дорожного движения в Ростове-на-Дону // Молодой исследователь Дона. - 2019. - № 1 (16). - С. 71-77., Feofilova A.A. Izuchenie neravnomernosti izmeneniya intensivnosti dorozhnogo dvizheniya v Rostove-na-Donu // Molodoy issledovatel' Dona. - 2019. - № 1 (16). - S. 71-77.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3